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Abstract

Philosophers of science have largely ignored a foundational and powerful method for physics,
dimensional analysis. This paper investigates the methodological and metaphysical foundations
of dimensional analysis as they came to salience in a debate last century. In particular,
the failed attempt of Richard Tolman to install the principle of similitude—the relativity of
size—as the founding principle of dimensional analysis both clarifies the method (and limits) of
dimensional analysis and articulates two metaphysical positions regarding quantity dimensions.
One position is quantity dimension fundamentalism. This combines a substantival realism with
a commitment to a construction principle: there is a set of objectively fundamental quantity
dimensions which provide a basis for the construction of derived quantity dimensions. The
opposing position, developed primarily by Bridgman, is quantity dimension conventionalism.
Bridgman”s conventionalism combines an anti-realism regarding quantity dimensions with
a denial of an objectively determined set of basic quantity dimensions. These metaphysical
issues were left somewhat unsettled. It is shown here that both of these positions face serious
problems: fundamentalism faces epistemological issues regarding our knowledge of the basic
quantity dimensions, failing to be properly connected to scientific practice; conventionalism
fails to take seriously the empirical constraints on chosen dimensional systems and fails to
make dimensional analysis explanatory. In their place I put forward an alternative position
which saves what is right in both: quantity dimension functionalism. This functionalism allots
quantity dimensions a structural, nomological reality and is found to cohere well with their
formal structure, allowing for a synthesis of two methodological conceptions of dimensional
analysis that prima facie are in tension: that dimensional analysis is a logical method and that
dimensional analysis provides explanations.
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1 INTRODUCTION 3

1 Introduction

This paper studies a dispute about the methodological foundations of dimensional analysis in
order to clarify its metaphysical foundations. In particular, consideration of the debate started
by the failed attempt of Richard Tolman to install the principle of similitude—the relativity of
size—as the founding principle of dimensional analysis both clarifies the method (and limits) of
dimensional analysis and articulates two metaphysical positions regarding the status of quantity
dimensions. One view, which I call fundamentalism, holds that the basic quantity dimensions are
metaphysically robust and fundamental natural kinds. Another view, conventionalism, holds that
the basic quantity dimensions are decided by convention and that a system of dimensions has no
metaphysical significance but serves as a guide to merely formal unit conversions. Objections to
both positions presented in the historical debate are found to have (limited) validity and a third,
alternative position, functionalism, is introduced. Quantity dimension functionalism is found to
cohere well with the formal structure of quantity dimensions and allows for a synthesis of two
methodological conceptions of dimensional analysis that prima facie are in tension: that dimensional
analysis is a logical method and that dimensional analysis provides explanations.

The historical discussion will be restricted to the debate prior to Bridgman’s landmark Di-
mensional Analysis and will focus largely on an exchange between Bridgman and Tolman.1 Other
significant contributors to the debate, Edgar Buckingham and Tatiana Ehrenfest-Afanassjewa,
cannot be given their full due. Connections to general, foundational, and contemporary issues in
the metaphysical and mathematical foundations of dimensional analysis will be spun out of this
narrative.

In what remains of this introduction, I will introduce dimensional analysis as a method for
problem solving in physics, clarify its role as a logical method, and clarify an all important and not
often made distinction between unit systems and dimensional systems. This introduction provides
all the necessary background for the rest of the paper to follow.

1.1 Dimensional Analysis in Action

Dimensional analysis is well known to even beginning students in physics, though explicit instruction
in the method is far from universal. Dimensional analysis finds use in (often heuristic) arguments in
fundamental physics and in technical engineering applications alike. Let’s consider an example of
(standard) dimensional analysis in action.

Say we are tasked with deriving the equation for the period of oscillation, t, of an arbitrary
pendulum. We assume that the system can be adequately described in terms of the following
quantities: the mass of the pendulum, m, the length of the pendulum, l, and the constant acceleration
1In this way it differs from the brief but more comprehensive account of the debates regarding dimensional analysis
in Walter (1990). Her account is more comprehensive in that it covers the debates before and after Dimensional
Analysis, but it is more myopic in its focus on Bridgman—Rightly so, as Walter’s book is a biography of Bridgman.
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of gravity, g.2 Next we assume that these quantities are all reducible to mechanical dimensions such
that:

[t] = T

[m] = M

[l] = L

[g] = LT−2.

The square brackets are a function from quantities to their dimensions, here given in terms of the basic
mechanical dimensions, mass, length, and time (capital un-italicized letters denote dimensions).3

We can restate the problem as that of finding the form the of the function f such that t = f(m, l, g),
and so . We assume that this function f takes the form of a monomial kmαlβgγ, with numerical
scale factor k.4 With these assumptions, the orthodox founding principle of dimensional analysis
requires that [t] = f([m], [l], [g]). This is the principle of dimensional homogeneity:

(The Principle of Dimensional Homogeneity) Every representationally adequate physical
equation is dimensionally homogeneous, and an equation is dimensional homogeneous iff
the quantity terms5 on each side have the same dimension.6

The principle of dimensional homogeneity therefore defines a set of linear equations to be solved for
the exponents that t has each of the indicated basic quantity dimensions,

M : 1α + 0β + 0γ = 0

L : 0α + 1β + 1γ = 0

T : 0α + 0β − 2γ = 1,

where the Greek variables stand for the exponents of the variables in the monomial and their
coefficients are the exponent of the indicated basic quantity dimension had by the corresponding
2This condition of “adequate description” is often called “completeness” (e.g. Buckingham 1914). That phrasing
gives the wrong idea. Dimension analysis requires only that all of the relevant quantities are considered, many
quantities that are also descriptive of the system (indeed there is an infinity of them) are excluded due to irrelevance
or redundancy, etc. In this way dimensional analysis is a modeling practice (see Pexton 2014).

3There is a slightly different convention, following Maxwell (2002), in which [L] represents the length dimension rather
than L, etc.

4This is due to Bridgman’s (1931) lemma, see Berberan-Santos and Pogliani (1999) and Jalloh (Forthcoming) for
discussion.

5Each of these terms are monomials of quantity variables (or constants) and dimenisionless scale factors, addition and
subtraction distinguish terms. This captures the intuition that it makes no sense to add a length to a mass or to
subtract a force from a velocity, etc.

6This principle is first made explicit by Fourier in his Théorie Analytique de la Chaleur : “It must now be remarked
that every undetermined magnitude or constant has one dimension proper to itself, and that the terms of one and
the same equation could not be compared, if they had not the same exponent of dimension.” (Fourier 1878, 128) For
more on the geometrical roots of dimensional analysis see De Clark (2017) and Roche (1998).
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quantities m, l, and g. By inspection α = 0. Now with two equations and two variables (β and γ)
we find the solution to be β = 1/2 and γ = −1/2, so

t = k

√
l

g

where k is some undetermined dimensionless constant. QED.7

1.2 Dimensional Analysis as Logic

Dimensional analysis was commonly thought of as a logical method by those who developed its
foundations (see also Gibbings 1982). I’ve attempted, in the demonstration above, to make the
logical character of dimensional analysis evident by distinguishing assumptions which draw upon
our prior physical knowledge and the workings of dimensional analysis itself. In discussing his
foundational paper on dimensional analysis (Buckingham 1914), Buckingham wrote:

Some three or four years ago, having occasion to occupy myself with practical hydro-
and aerodynamics, I at once found that I needed to know more about the method in
order to use it with confidence for my own purposes. . .

I had therefore, as it were, to write an elementary textbook on the subject for my own
education. My object has been to reduce the method to a mere algebraic routine of
general applicability, making it clear that Physics came in only at the start in deciding
what variables should be considered, and that the rest was a necessary consequence of
the physical knowledge used at the beginning; thus distinguishing sharply between what
was assumed, either hypothetically or from observation, and what was mere logic and
therefore certain. (Buckingham to Rayleigh, November 15 1915)8

It is clear from this that Buckingham understood dimensional analysis as a logical method insofar
as it was certain and so did not depend on any further empirical claims, i.e. a priori. Modeling
dimensional analysis on deductive logic, we can say that it provides a form of valid argument
(more abstractly, transformation rules): if such-and-such quantities have such and such dimensions,
relative to a dimensional system (see next section), then they are related by so-and-so functions.9 In
7Such derivations can be done more systematically by way of the Π-theorem, a fundamental result of dimensional
analysis, which informs us that for any system the number of quantities that describe the system, N , and number of
basic dimensions from which the dimensions of those quantities are derived, B, determine the number of dimensionless
Π-terms (Π for products of powers of the N quantities) which are sufficient to describe the system: N − B. Given
that there are four variables and three basic quantity dimensions (M, L, and T), one such dimensionless Π term is
needed to describe this pendulum example, the ratio of the period to the function f (i.e.

√
l
g ). The Π-theorem is

discussed in more somewhat more detail and references are provided in §2.2.
8Courtesy of the American Institute of Physics, Niels Bohr Library and Archives, MP 2017-2296; 33.
9That the generation of Π-terms and so functional relations can be computed completely and without arbitrariness is
shown in Gibbings (2011). That does not mean, of course, that in ordinary practice there is not an art in determining
which Π-terms and so functional relations are of interest for the relevant system.
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our extended post-logical-empiricism hangover, such a distinction may seem hopeless, and worse,
old-fashioned—we cannot accept Buckingham’s conception of dimensional analysis.10

Here I’d like to rehabilitate an idea of dimensional analysis as logic, by abandoning Buckingham’s
epistemic conception of logic, while accepting that it stands apart from ordinary physics in an
important way. The relations between dimensional analysis and experiment are too complex to
segregate dimensional analysis from empirical assumptions, but there is still a sense in which
dimensional analysis stands above (or below) the ordinary practice of physics in a way similar to
relative standing of logic and ordinary reasoning. For this rehabilitation, I will draw on Gil Sagi’s
(2021) recent defense of an exceptionalist conception of logic as a methodological discipline— this
contrasts from the usual exceptionalist conceptions of logic on an epistemic basis, like that it is a
priori, that is now so unfashionable after Quine (1951). In adding dimensional analysis to the roster
of methodological disciplines, I am accepting the invitation left open by Sagi that “[p]erhaps there
are other methodological disciplines targeting scientific practice” (2021, 9741). I offer the claim that
dimensional analysis is the methodological science peculiar to quantitative science, here narrowly
considered as peculiar to quantitative physical science, and so can synonymously be understood as
the logic of quantities.

What is a methodological discipline? We may do well to start with the characterization given by
Sagi:

As a start, by a methodological discipline, I mean a discipline that produces tools,
methods or a methodology for some practice. I take a method to be a systematic
procedure or system of rules for carrying out a practice. There may be methods for
very specific practices (measuring the distance between the earth and the moon, solving
differential equations) or general methods advising a whole discipline (how to conduct
a scientific experiment, how to prove a mathematical theorem). . . A methodology, in
general, is aimed at a higher level of scientific practice, as it concerns the production and
selection of scientific theories. A methodology, I assume, may give rise to a method (for,
e.g., theory choice) or consist of a compendium of methods (for reasoning in science).
(Sagi 2021, 9736)

A methodological discipline is defined relationally to what we may call a client discipline. The
methodological discipline aids practitioners in aligning their scientific practice to the aims of their
first-order client discipline. Put differently, the aims of a methodological discipline are to ensure that
the products of some client discipline (e.g. theories or models) meet the internal aims of that client
10In a later letter to Rayleigh on January 7 1916, Buckingham already expresses his feeling that his methodological

strictures chafed against the zeitgeist: “It is evidently desirable that this subject should receive a clear exposition.
Tolman does not, I imagine, care much for the distinctions between known facts, assumptions made for the sake of
building up theories, and purely logical operations on these facts or assumptions. And it seems that many of the
very clever rising generation of physicists have much the same feeling. I, on the other hand, regard these distinctions
as very essential to clear thinking and sound progress.” (p 6)
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discipline (e.g. prediction, explanation). Here I am proposing that dimensional analysis has physics
as a client discipline (among others)—dimensional analysis provides principles and derivational
techniques that allow physicists to check the validity of their quantitative equations and to efficiently
derive new ones.11

What is the relation between a methodological discipline and a client discipline? One intriguing
characterization of the relation between the two that Sagi gives involves an extension of the
use-mention distinction: client disciplines use tools, methods, and concepts that are mentioned
(e.g. criticized, constructed) by the corresponding methodological discipline. While physics uses
concepts of quantity, principles of homogeneity, and dimensional systems, it is left for dimensional
analysis to discuss the nature of quantities, justify and determine the consequences of dimensional
homogeneity (e.g. the Π-theorem), and elaborate and distinguish dimensional systems.12 It is
important that this exceptionalist, relational conception of methodological disciplines does not lapse
into a sort of epistemic foundationalism as attacked by Quine. We can capture both the special
position of a methodological discipline and its revisability by distinguishing two phases of research:

(Business as Usual) The methodological discipline constructs, describes, and regiments the
techniques and concepts used by the client discipline. The rules set by the methodological
discipline exert normative force on the practitioners of the client discipline, when there
is a discrepancy, the principles set by the methodological principle take precedence.

(Negotiation) First order problems or developments in the client discipline lead to a
reconsideration of the principles of the methodological discipline and the relationship
between the two—neither discipline takes normative priority to the other.

In the Business as Usual phase the client-provider relation is as expected, the methodological
discipline provides tools and method which hold normative force over the practices of the client
discipline—a equation of physics found to violate dimensional homogeneity is an equation to be
corrected (or at least used with great care in special circumstances). In the Negotiation phase,
usual business is disrupted, internal pressures from the client discipline (e.g. empirical results,
paradoxes) lead to adjustments in the methodological principle and even shifts in what aspects of the
relevant scientific practice belong to which discipline. The historical episode to be considered here is
usefully described in these terms: In the early twentieth century, pragmatic matters (above all the
development of airplanes) lead to a formalized business deal between the nascent methodological
discipline of dimensional analysis and the physical sciences. While this deal quickly came to
be “business as usual”, Tolman attempted in 1914 to renegotiate the deal. Inspired by radical
11A similar distinction between “framed” and “framing” inquiry has been articulated and defended by Henne (2023).
12A closely related and analogous methodological discipline is metrology, which provides the (experimental) physicist

with units of measurement, values for constants, rules for error propagation, etc. Metrology is an important case to
consider as the divide between the methodological discipline and the client disciplines has there become sociologically
and institutionally regimented in a clarifying way.
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developments in the client discipline, physics, Tolman attempted to augment the foundations of the
methodological discipline with a new relativity principle and thereby provide new constraints on the
client discipline. While Tolman’s negotiation failed, it made explicit many implicit aspects of the
initial deal between dimensional analysis and physics, some which have still yet to be fully clarified.
In the next subsection I clarify an important aspect of the usual deal and raise one issue left to be
negotiated: To what extent are features of our dimensional systems objective?

1.3 Dimensional Systems and Unit Systems

Dimensional analysis depends on some assumptions regarding physical quantities. They must form a
complete dimensional system, meaning that the complete set of quantities are reducible to products
of powers of fundamental units multiplied by a numerical scale factor:13

Qi = kiu
α
a uβ

b uγ
c . . .

Qi is some arbitrary quantity. ki is some numerical factor. ux is some fundamental unit. The Greek
exponents are known as dimensions, following Fourier (1878).14 Each basic unit is assigned a basic
dimension. For example, in a mechanical dimensional system,

m = uM

l = uL

t = uT

where l, m, and t are arbitrary mass, length, and time quantities, e.g. a kilogram, a meter, and
second. Each of these units have a basic dimension,

[m] = M

[l] = L

[t] = T

which, in abstraction from the actual units, we can use to derive the dimension of all other mechanical
quantities. Hence dimensional systems, which are determined by the basic dimensions, are more
coarse-grained than unit systems. For each dimensional system there is arbitrarily large set of
logically possible coherent unit systems which are all inter-convertible and hence form what I will
call a “dimensional group”.15 For example, the dimensions of force, F , and the dimensions of velocity,
13See Bridgman (1931) and Berberan-Santos and Pogliani (1999) for proofs.
14This sometimes leads to expressions like “has exponent d in dimension X” which are equivalent to expressions like

“has dimension Xd”.
15
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V , are given so:16

[F ] = MLT−2

[V ] = LT−1

These dimensional formulae correspond to definitions of mechanical units:

f = kfmlt−2

v = kvlt−1.

For a coherent system of mechanical units kf = kv = 1.17 We can distinguish basic quantities,
which have dimensional exponent 1 in only one of the basic dimensions, and derived quantities,
which have arbitrary dimension in any of the basic dimension. Basic quantities are measured by
fundamental units and derived quantities are measured by defined units. The dimensions of the
derived quantities encode formal relations between them and the basic quantities. These relations are
formal because they identify the transformation relations between derived quantities upon changes
in the fundamental units.

For any derived mechanical quantity, Q, its defined unit, q, will be a monomial function of the
fundamental units, just as described above:

q = mαlβtγ

The Greek dimensional exponents determine how the defined unit changes with arbitrary scalar
transformations of the fundamental units:

q′

q
=
(

m′

m

)α

·
(

l′

l

)β

·
(

t′

t

)γ

where the primed units are the new units. If we halve the fundamental time unit, 2t′ = t, and leave
the mass and length units unchanged, for example, the unit of force, f , will quadruple because
16Italicized capital letters are variables for quantities, I will, for the remainder of this section, retain lowercase variables

for units. Unitalicized capital letters represent dimensions.
17The usage of the terminology “complete” and “coherent” varies widely. I am also here making a distinction between

dimensional and unit systems that is not usually made, though see Abraham (1933). I reserve “complete” for
dimensional systems with a reduction base as I go on to describe. I reserve “coherent” for any unit system of
a complete dimensional system such that the derivative quantities are defined with dimensionless scale factors
ki = 1. Complete equations, which are interpreted according to a complete dimensional system, are unit-invariant
(in algebraic form) for any coherent unit system of that dimensional system. This captures the lessons of Grozier
(2020), though he does not make the distinctions I make, as the mistakes he diagnoses could be avoided by the
recognition of the distinction between dimensional systems and the more fine-grained unit systems.
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γf = −2 and the velocity unit, v, will double because γv = −1:

f ′

f
=
(

m′

m

)1

·
(

l′

l

)1

·
(

t′

t

)−2

=
(2t

t

)−2
= 1

4
v′

v
=
(

m′

m

)0

·
(

l′

l

)1

·
(

t′

t

)−1

=
(2t

t

)−1
= 1

2

The use and operation of these unit transformation rules and their duality with dimensional formulae
are uncontroversial. While much of the methods that dimensional analysis provides to physics are
uncontroversial, there remains controversy regarding the meaning of its subject matter, quantity
dimensions and dimensional formulae.

One interpretation of dimensional analysis harks back to Buckingham’s conception of dimensional
analysis as a formal logic concerned with conventionally decided transformation rules on defined or
stipulated “objects”. Ultimately dimensional formulae are understood to be formal, rules for the
use of units and numerical representations of quantities, which are purely conventional. On this
reading, representations of dimensions like M are purely syntactic shorthand for change ratios like
m′/m. The basis of a dimensional system and the corresponding formulae for derived dimensions
are reducible to rules of translation between ultimately conventional unit systems that regiment our
practice of assigning numbers to objects and systems.

There is a competing interpretation of dimensional analysis that holds quantity dimensions
to be entities in their own right, irreducible to mere convention and formal rules. On this view
dimensional formulae do not only represent unit transformation rules but reveal the metaphysical
character of quantities. Not only is a unit of force defined, but a quantity of force is constructed or
constituted by the dimensions of mass, length, and time. On this view it is as if the basic dimensions
are the fundamental substances from which the more complex derivative quantity dimensions are
composed.18

In order to further explicate and critically examine these two interpretations of dimensional
analytic methods and objects, I will set them against questions regarding the objectivity of the two
main features of dimensional systems discussed here: basic quantity dimensions and dimensional
formulae.

1.4 Metaphysical Questions

In the debate to be considered a number of metaphysical questions get raised and several metaphysical
positions are articulated in response to them. First there is an ontological question, raised in the last
section: Are quantity dimensions metaphysically real? I wish to retain this question in this gross
form as to not get prematurely distracted by question in the metaphysics of properties. Dimensional
18This controversy continues to today, with Skow (2017) arguing against the interpretation of dimensional formulae

as denoting constitution relations.
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realists answer yes: there is some sort of ontic property that corresponds to e.g. mass that differs from
that of e.g. volume. Dimensional anti-realists answer no: quantity dimensions are exhausted by the
formal rules given by dimensional analysis for the transformations of units, i.e. dimensional formulae
represent unit-change ratios and nothing more. Both the realist and anti-realist positions can be
further speciated by consideration of another metaphysical question: Is there a set of objectively
basic quantity dimensions (for a given dimensional system)? There is lurking complexity in this
question as well; we can distinguish the question of whether there are some particular quantity
dimensions that are objectively basic and whether there is some weaker restriction, like cardinality,
on the set of basic dimensions. These subquestions will be addressed in what follows, but for coming
to the set of metaphysical positions to be consider we need only consider the gross question. The
dimensional realist who answers yes, there is a set of objectively basic quantity dimensions, is the
quantity dimension fundamentalist, a position articulated in this debate by Tolman. The dimensional
realist who answers no is a functionalist, a position I will articulate and defend at the end of this
paper. On the anti-realist side, there is the operationalist, who accepts an objectively basic set of
quantity dimensions on an epistemic basis, rather than a metaphysical one. This position will not be
considered here, as it lies outside of the historical scope of this essay.19 A dimenisional anti-realist
that rejects an objective dimensional basis is a thoroughgoing conventionalist—Bridgman articulates
this position in opposition to Tolman. The relationships between these metaphysical positions and
the questions which they answer are summarized in the following flowchart.

Quantity dimension realism?

Objectively basic dimensions? Objectively basic dimensions?

Fundamentalism Functionalism

Operationalism

Conventionalism

Yes No

Yes
No Yes No

Figure 1: Flow chart through the logical space of quantity dimensions metaphysics.

As I will show, both fundamentalism and conventionalism about quantity dimensions are articulated
and defended in the years 1914-1917. A third view, functionalism is presented here as a synthesis of
the two, responsive to problems to both historical positions.20

19The operationalist’s basis is determined by the primitive, direct, measurement operations that we can perform.
Different authors disagree on what dimensions meet this experimental criterion, e.g. fundamental mass vs fundamental
force (see, e.g. Gibbings 2011).

20Dialectically, one may find this division of the logical space similar to that in Skow (2017). The analogy would
be that Skow’s positivist stands in for my conventionalist, his contructivist for my fundamentalist, and his
definitional connectionist for my functionalist. There are some differences: Skow’s definitional connectionist is
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Quantity dimension fundamentalism combines a substantival realism21 with a commitment to a
construction principle: there is a set of objectively fundamental quantity dimensions which provide
a basis for the construction of derived quantity dimensions.22

(Fundamentalism) The basic quantity dimensions are natural kinds. These kinds are
objectively determined independently of the dimensional system we in fact use.

Fundamentalism is just a quantitative counterpart to realism regarding natural kinds, which is
common in certain philosophical ecosystems (largely following D. Lewis 1983).23 These natural
kinds are supposed to “cut nature at the joints” in a way independent of human conventions
while avoiding the inelegance of grue and similar mongrel properties. This also means that the
nature of derived quantity dimensions are completely determined by dimensional formulae, which
take on a metaphysical significance beyond their role in guiding unit transformations, e.g. the
metaphysical nature of force is described by [F ] = F = MLT−2. For the (putative) basic quantity
dimensions, e.g. mass, such formulae are trivial, which points to the basic quantity dimensions
having intrinsic essences or quiddities. Whether the derivative quantity dimensions have their own
intrinsic quiddities that stand in some sort of grounding relation with the basic dimension quiddities
or else are constituted by and “nothing over and above” the basic dimension quiddities depends
on the conception of metaphysical construction one adopts, such fine-grained differences are of no
concern here.

The major alternative metaphysical position to fundamentalism was most extensively articulated
by Percy Bridgman (1916). Bridgman’s conventionalism combines an anti-realism regarding quantity
dimensions with a denial of there being any objectively determined set of basic quantity dimensions:

(Conventionalism) Quantity dimensions are purely formal devices that serve as shorthand
for unit transformation rules.24 Being decided by convention, there is no objectively
determined set of basic quantity dimensions, nor any objectively determined number of
them.

also a fundamentalist as they are committed to non-relativity, the position that there is an objectively determined
basis for our dimensional system. That said, Skow’s definitional connectionist comes closer to my functionalist in
that he describes quantity dimensions as independent things that are necessarily connected (Skow 2017, 194). An
appreciation of the full force of conventionalist symmetries would lead Skow’s definitional connectionist to drop
the ideas of unique real definitions of derivative dimensions, and so essences of dimensions in general, yielding a
functionalist account. A direct confrontation of our arguments will have to be postponed.

21I say this to emphasize that this is realism regarding dimensions qua substances or natural kinds, as opposed to the
functionalist realism I will defend, in which dimensions are something like nomological roles.

22I do not probe into different metaphysical accounts of this construction or reduction. I take the relation to at least
be as strong as supervenience and further is completely described by the vector space representation of quantity
dimensions, see §3.3.

23Indeed if, as under most versions of natural kinds metaphysics, the natural kinds supposed are those necessary
to establish physics and if physics is essentially quantitative, property fundamentalism just is quantity dimension
fundamentalism (e.g. Sider 2011, who generalizes “natural kinds” to “structure”).

24I.e. change ratios, see Abraham (1933) Grozier (2020).
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On this view, unintuitive (or even “unnatural”) quantities like jerk (the derivative of acceleration)
may serve as a basic dimension just as well as length or time might. Further, the number of basic
dimensions is a matter of convention, with the elimination or addition of basic quantity dimensions
being compensated by a respective elimination or addition of fundamental dimensional constants
(see §3.1).

As will be shown, both of these positions face serious problems: fundamentalism faces epistemo-
logical issues regarding our knowledge of the fundamental quantity dimensions, failing to be properly
connected to scientific practice; conventionalism fails to take seriously the empirical constraints on
chosen dimensional systems and fails to make dimensional analysis explanatory. This paper closes
with an exhibition of a third position which accommodates the surviving aspects of each position:

(Functionalism) Quantity dimensions are not natural kinds, with essential, intrinsic, or
substantival natures but are rather are structural. A quantity dimension is a quantity role
in the the laws. A quantity dimension is what is invariant under all of the conventionalist
transformations—the ratios of dimensional exponents between quantity dimensions.25

By retaining some metaphysical heft, nomological rather than ontological, the functionalist allows
for dimensional analysis to be genuinely explanatory—dimensional equations describe the necessary
structural relations between properties of physical systems. For the conventionalist, the similarity
of distinct systems captured by dimensional analysis is merely a quirk of our measurement system
and cannot be attributed to the natures of the systems but merely the unit invariant form of the
laws that we have chosen to adopt. But the functionalist is also able to capture the conventionalist
intuition regarding the absence of an objectively determined basis for a dimensional system: Whether
force or mass is treated as basic, it will always be the case that scalings of one will imply scalings of
other to the same degree. Scalings of length will correspond to second degree (i.e. squared) scalings
of area, and so on.

The context in which the question of the metaphysics of dimensions first came to light was in a
debate a regarding which of two principles, the principle of dimensional homogeneity or the principle
of similitude, is the fundamental principle of dimensional analysis:

(The Principle of Similitude) The fundamental entities out of which the physical universe
is constructed are of such a nature that from them a miniature universe could be con-
structed exactly similar in every respect to the present universe. (Tolman 1914a, 244, his
emphasis)26

25By having the exponential ratios be the essence of quantity dimensions, the functionalist nicely coheres with the
first formal specification of dimension by Fourier (1878). However, the functionalist holds that these power relations
are representations of some nomological relations and is not limited to our mathematical representations of physical
systems.

26A major warning is to be heeded here. In this paper “the principle of similitude” or “the method of similitude”
refers to uses of Tolman’s principle. More generally “similarity methods” are just another term for using traditional
dimensional analysis based on the principle of dimensional homogeneity and proportionality principles (see Sterrett
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Tolman’s principle of similitude was inspired by the relativity theory (see next section). Tolman
conceptualized his principle of similitude as a relativity principle, the relativity of size (or length
scale). Tolman assumes, as Poincaré did before him, that a universal scale transformation of lengths
ought to be an empirical symmetry, e.g. a doubling of all the lengths overnight would not be
empirically detectable. Operationalizing this transformation as a scaling of the length unit, Tolman
relies on the light postulate (spatializing time) and Coulomb’s law (linking the transformation to
properties of matter) to spell out the corresponding transformations required in other quantity
dimensions to preserve the symmetry (details appear in the next section). As it turns out, Tolman’s
principle of similitude is false, owing to its conflict with the Newtonian Gravity and the relevant
confirming evidence thereof—This was pointed out almost immediately by Buckingham (1914) and
amplified by Ehrenfest-Afanassjewa (1916b) and Bridgman (1916). Tolman himself thought a new
theory of gravity was imminent.27 The falsity of Tolman’s principle is irrelevant to my concern here,
which is the way the methodological debate raised the questions about the metaphysical foundations
of dimensional analysis discussed above. So the central question of the debate from my perspective
is this: Modulo falsity, does the principle of similitude have any claim to being methodologically
prior to the principle of dimensional homogeneity? As this gets cashed out in the debate: Is there a
class of problems in which the principle of similitude can be applied and the principle of dimensional
homogeneity fails to apply or applies but provides less informative solutions?

2 A Debate in Three Parts

In this section I discuss the debate surrounding Tolman’s principle of similitude in three parts, roughly
in historical order. Each subsection deals with a dialogue between Tolman and an interlocutor:
Edgar Buckingham, Tatiana Ehrenfest-Afanassjewa, and Percy Bridgman. Each dialogue brings
forward the metaphysical issues latent in the methodological debate, but special attention is paid to
the dialogue with Bridgman, which leads to explicit metaphysical accounts of quantity dimensions.

First a brief note on the scientific context for this debate is necessary. The concern with the
foundations of dimensional analysis is connected to other radical changes in the foundations of
physics in general.

2017). At the risk of misunderstanding, I am sticking with the terminology used by those in the debate—though it
is relatively clear that Buckingham (1914) intended to reclaim the terminology of similitude from Tolman. In the
end Buckingham won out.

27The relationship between Tolman’s principle and the emergence of novel theories of gravity, let alone questions
about the nomological nature of the constants (see §2.3), is much too large a topic to be dealt with here in any way.
I will only note that Nordström (1915) developed a version of his scalar gravitational theory (an early competitor
to GR) that is consistent with Tolman’s principle. The development and significance of such a theory is left for
future work.
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2.1 Contextualizing Dimensional Analysis in the Wake of Relativity

This debate regarding the foundations of dimensional analysis was not about relativity, nor quantum
mechanics.28 That said, it is important for understanding the opening of this line of inquiry to
understand some of the fundamental questions that were raised by relativity, which caused Tolman
in particular to reconsider the very nature of physical quantities. Walter situates the development
of dimensional analysis as part of a broader reckoning with the radical consequences of relativity
theory:

[T]he dimensional analysis controversy revealed a generous amount of confusion about
the meaning of relativity and measurement. . . Einstein’s abrogation of the traditional
meaning of measurement has demonstrated that the relationship between mathematics
and physical reality had to be reconsidered. The dispute over dimensions was just
one manifestation of a general concern that would be stated with more precision and
politicized by the logical positivists. (Walter 1990, 84)29

The following description of this broader context is based on Walter’s more thorough accounting of
the relevant foundational debates in the wake of relativity.

The special theory of relativity was met with great suspicion and disbelief when it was brought
to the attention of American physicists—the promulgation and acceptance of the theory in America
is due in no small part to the efforts of Gilbert N. Lewis and Richard C. Tolman in 1908.30 In Lewis
and Tolman’s (1909) article, in American pragmatist fashion, describe the principle of relativity
as grounded in the generalization of experimental facts—most importantly the Michelson-Morley
experiment—and as a principle about what is measurable:

[Einstein] states as a law of nature that absolute uniform translatory motion can be
neither measured nor detected. (G. N. Lewis and Tolman 1909, 712)

This is to say that only relative notion has “physical significance”. This principle, combined with the
postulate of the frame invariance of the speed of light, leads to shocking consequences of relativity
28While beyond the scope of this work, see Semay and Willemyns (2021) for an initial look at the application of

dimensional analysis to quantum mechanics. While Nordström (1915) moves the debate into one concerning a
relativistic theory of gravity, this is not the primary concern of the dimensional analysts. See Porta Mana (2021)
for a contemporary and systematic application of dimensional analysis to general relativity theory.

29One of the broader trends—interrelated with the dimensions debate—is the search for a natural or ultimate and
rationally determinable set of fundamental units. This I cannot discuss here, interested readers should consult
Walter (1990).

30They presented a paper “Non-Newtonian Mechanics and the Principle of Relativity” at the Christmas meeting of
the American Physical Society in 1908, as stated by Kevles (1995, 90). However, I can find no trace of an article
in Physical Review as he claims. The article (draft completed in May 1909) was published both in Philosophical
Magazine and The Proceedings of the American Academy of Arts and Sciences the following year with an inverted
title: “The Principle of Relativity, and Non–Newtonian Mechanics”. Here I cite the latter, American publication,
a citation for the former can be found in Walter (1990). See also Goldberg (1984) and Goldberg (1987) on the
American response to relativity and Lewis’ and Tolman’s roles.
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theory, time dilation and length contraction. Lewis and Tolman’s grounding of relativity and its
consequences in measurement results leads them to an antirealist interpretation of such consequences:

Let us emphasize once more, that these changes in the units of time and length, as well
as the changes in the units of mass, force, and energy which we are about to discuss,
possess in a certain sense a purely factitious significance; although, as we shall show, this
is equally true of other universally accepted physical conceptions. We are only justified
of speaking of a body in motion when we have in mind some definite though arbitrarily
chosen point as a point of rest. The distortion of a moving body is not a physical change
in the body itself, but is a scientific fiction. (G. N. Lewis and Tolman 1909, 717)31

The contrast drawn is between what they take to be the Einsteinian point of view on these distortion
effects and the real contraction of Lorentz.32 They describe these phenomena as changes in units and
“in a certain sense psychological”. Lewis and Tolman claim that the acceptance of these distortions
is the cost of retaining our fundamental conceptions of physics. The psychological unreality of these
distortions owes to the fact that their occurrence appears to depend on whether or not some observer
considers herself at rest, a judgment lacking in objectivity due to the relativity principle.

The more proper evaluation of the situation is given in Lewis and Tolman’s claim that absolute
motion has no significance—dilation and contraction are artifacts of an arbitrarily chosen rest point,
therby retaining something of our “fundamental conceptions”. This is a common feature of symmetry
arguments, which occurs in Tolman’s argument for the principle of similitude as well as recent
debates on quantity symmetries:33 In arguing for the existence of a symmetry transformation and
thereby the unreality of the supposed features of reality that vary under that symmetry, the basis
for the symmetry argument seems to be undermined as there is no such feature to be transformed.
In Einstein’s case this is absolute velocities; In Tolman’s case, with his supposed relativity principle,
the principle of similitude, it is absolute lengths. This is of course only a matter of charitable
interpretation and convenience in discourse: in either case any appearance of self-undermining
conclusions can be removing by restating these relativity principles as statements about what
objective structure there is. The theory of special relativity rejects any objective, frame-independent,
velocity structure. Tolman’s principle of similitude rejects any objective, absolute length magnitudes,
which become dependent on a choice of comparative standard, analogous to how length quantity
values (i.e. numbers) are relative to a choice of unit standard (i.e. a length defined to be represented
by 1).
31The special theory of relativity was seen as upending our fundamental concepts of physical quantities—when Lewis

and Tolman refer to “units” they are conflating the functions of units as reference quantities and as numerical fixed
points. The terminology of units vs quantities vs magnitudes was not to be standardized for decades.

32As well as Fitzgerald. Recent discussion stemming from Bell (1976) shows that the nature of length contraction and
time dilation, or at least their proper ground, is still in question. See e.g. Brown and Pooley (1999).

33See Wolff (2020) and citations therein on the absolutism-comparativism debate in the metaphysics of quantity. The
supposed mass doubling symmetry at the center of the debate is a direct analogue of Tolman’s miniature universe
transformation.
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2.2 Tolman v. Buckingham

The inciting event is Tolman’s (1914a) publication of “The Principle of Similitude” which puts
forward a relativity principle—the relativity of size—as the founding principle of dimensional analysis.

(Relativity of Size) A global transformation of the length scale is both a dynamic and
empirical symmetry—there is no objectively determined length scale.

Tolman proceeds by way of a thought experiment: consider two observers O and O′ whose measure-
ment standards, ergo their unit systems, stand in such a way that O′ assigns the same numerical
values to the counterpart quantities in a miniature universe as O assigns to quantities in their
universe. Their length measurements, in the unit system of O, will have the relation l′ = xl. From
this and the acceptance of the speed of light postulate, their temporal measurements must also stand
in the same relation: t′ = xt. From assuming the invariance of other laws (e.g. Coulomb’s law),
Tolman derives a whole set of symmetry transformations:34

Quantity Kind Symmetry Transformation
Length l′ = xl

Time Duration t′ = xt

Velocity v′ = v

Acceleration a′ = x−1a

Mass m′ = x−1m

Force f ′ = x−2f

Energy U ′ = x−1U

Energy Density u′ = x−4u

Electrical Charge e′ = e

Entropy S ′ = S

Temperature T ′ = x−1T

From these results Tolman determined the functional form of several physical equations describing
important physical phenomena: ideal gases, blackbody radiation, the electromagnetic field, and the
electron (its mass-radius ratio and its radiation law).35

In the same year Buckingham’s landmark paper “On Physically Similar Systems” presents the
most influential proof of the Π-theorem (a foundational theorem of dimensional analysis), and
Buckingham argues that Tolman’s principle is only a special case of his result. I will not here go
through the derivation of the theorem.36 Buckingham’s statement of essential content of the theorem
should be quoted:
34Table selectively adapted from Tolman (1915), 226. Note the invariant quantities and the corresponding theoretical

commitments of Tolman’s principle: the constancy of the speed of light, electromagnetic theory, and the laws of
thermodynamics.

35Further, in another paper, Tolman (1914b) derived the equation for the specific heat of solids.
36See Gibbings (1982, 2011), Sterrett (2009, 2017, 2021), and Pobedrya and Georgievskii (2006).
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When absolute units are used, the validity of a complete physical equation is unaffected
by changes in the fundamental units. Hence in changing from a system S to a similar
system S ′ it is immaterial to the validity of the equation in question whether we do or do
not retain our original fundamental units. If we alter the sizes of the fundamental units
[Q1] . . . [Qk] in the same ratios as the kinds of quantity Q1 . . . Qk which they measure,
the numerical value of any quantity of one of these kinds will be the same in both
systems. And if we do not change the relations of the derived and fundamental units
of our absolute system, every derived unit [P ] will change in the same ratio as every
quantity P of that kind, so that the numerical value of every quantity in the system S

will be equal to the numerical value of the corresponding quantity in the similar system
S ′. (Buckingham 1914, 354)37

While Buckingham here follows the Maxwellian fashion of discussing dimensional analysis in terms
of invariance of “complete” equations under transformations of the fundamental units, we can
understand his claim here as a generalization of Tolman’s similarity principle. Given a coherent
or absolute unit system, the relations between basic and derived quantities are defined such that
arbitrary changes in the magnitudes of the basic quantities, including the fundamental units, induce
changes in the derivative quantities, and the derived units, such that representationally adequate
equations and dimensionally homogeneous equations, interpreted quantitatively or numerically
remain true. This is done without stipulating a particular invariance with respect to transformations
of the length quantities. In brief the theorem states thus: All physical equations are dimensional
homogeneous and so can be put in the form:

A1 + A2 + · · · + AN = 0,

where each A-term is a product of powers of the fundamental Q-terms (the basic quantities of
the dimensional system, e.g. masses, lengths, and times) and each term has the same dimension:
[Ai] = [Aj]. Therefore, subtracting AN and then dividing through by −AN yields an equation with
dimensionless Π-terms:38

Π1 + Π2 + · · · + ΠN−1 = 1.

These dimensionless Π-terms will be invariant under any change of numerical value (passive trans-
37Walter’s discussion contains a claim which requires correction. Walter distinguishes similitude, “a simple way to

investigate the manner in which a change of scale affects the properties of physical systems”, from dimensional
homogeneity, which requires that “the operation of addition and the relationship of equality are valid only for
objects [i.e. quantities] of the same kind [i.e. dimension]” (Walter 1990, 86–87). The claim to be criticized is
that “Buckingham, like everyone else” conflated these two bits of dimensional reasoning. This claim is false:
Buckingham (1914) clearly distinguishes similitude and dimensional homogeneity as he uses the principle of
dimensional homogeneity to provide a proof of the Π-theorem, which in turn defines a criterion for physical similarity.
One follows from the other, but there is no indication that these are to be equated.

38The dimensionless quantities and the theorem get their name from the fact that the dimensionless terms of the
equation have the form of product-functions: Π =

∏N
i Qxi

i .
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formation) or magnitude (active transformation) of the fundamental units. Buckingham makes the
case that Tolman’s selection of speed, charge, and entropy as the invariants of the symmetries of his
dimensional system is merely a specific realization of the general theorem, itself a consequence of
dimensional homogeneity.39 Buckingham goes on to show that his method solves the problems that
Tolman’s principle of similitude purports to, e.g. the ratio of the mass and radius of an electron. He
also goes on to derive the essential inconsistency of Tolman’s system and the gravitational law.

Tolman (1915) responds to Buckingham and argues that the Principle of Similitude is distinct from
and superior to the Principle of Dimensional Homogeneity on grounds of the latter’s inapplicability
to systems with dimensional constants of unknown dimensionality. These are cases in which
dimensional analysis necessitates the introduction of dimensional constants in order to make
dimensionless products of quantities (i.e. Π-terms). Consider Stefan’s law, u = aT 4. By the lights of
the dimensional analyst, in advance of the establishment of the dimension of a, the equation could
have a different algebraic form, e.g. u = aT 3.

In this case, the dimensional analyst is tasked with determining a function that relates the
energy density of a blackbody, u, and its absolute temperature, T . Their respective dimensions,
ML−1T−2 and Θ, are incommensurable, so the principle of dimensional homogeneity is of no help. If
the dimensional analyst was give the dimensions of the constant, a, which mediates relation between
the two constant, dimensional homogeneity would then constrain the form of the functional relation
between the two. If the dimensional analyst was given the form of the functional relationship
between u and T , then dimensional homogeneity would constrain the dimensions of the mediating
constant, a. Without either the dimensions of the mediating constant or the form of the function
relating the two inhomogeneous quantities, the dimensional analyst armed only with the principle of
dimensional homogeneity can make no derivations.

On the contrary, the principle of similitude tells us that u must be numerically equivalent to its
scale counterpart, u′:40

u = F (T ) = u′ = F (T ′) = x4F (x−1T ).

The solution for this equation requires taking temperature to the fourth power, and due to the ratio
structure of the quantities involved, the equation is only fixed up to a scalar factor, a,41 yielding
39Further: “The unnecessary introduction of new postulates into physics is of doubtful advantage, and it seems to me

decidedly better, from the physicist’s standpoint, not to drag in either electrons or relativity when we can get on
just as well without them.” (Buckingham 1914, 356) Ehrenfest-Afanassjewa (1916b) makes the same criticism. This
can be understood as opposition to Tolman’s attempt at renegotiating the lines between the dimensional analysis (a
methodological discipline) and first order physical laws (which make up the client discipline).

40Referring to the table above we see that u scales with x4 and T with x−1.
41One way to think about the nature of the functional results yielded by either form of dimensional analysis is

that the results give the family of curves that corresponds to the function, but doesn’t give you the value of the
coefficients. Those are found by experiment (see Gibbings 1974; Gibbings 2011 on the relation of dimensional
analysis to experiment).



2.3 TOLMAN V. EHRENFEST-AFANASSJEWA 20

Stefan’s law:
u = aT 4.

Now considerations of dimensional analysis non-arbitrarily yield the dimensions of the constant.
As the dimensional analyst starts with neither the form of the equation nor the dimension of the
constant, the principle of dimensional homogeneity is not applicable. If the dimensional analyst
had the form of the law, the constraint of dimensional homogeneity would immediately yield the
dimensions of the constant. If the dimensional analyst has the dimensions of the constant, the
constraint of dimensional homogeneity would (up to a scale factor) determine the functional, algebraic
form of the equation, as is usually done in dimensional derivations.

Tolman puts the relation of the two principles thus:

Where dimensional constants enter, the principle of dimensional homogeneity is of no
avail in predicting the form of a relation, since we cannot tell beforehand what the
dimensions of the constant are going to be. For such problems we must have recourse
to the principle of similitude. On the other hand, when dimensional constants do
not enter into the relation, although we may apply either principle, the principle of
similitude is usually the less powerful since it merely prescribes invariance when the
different measurements are multiplied by powers of a single arbitrary multiplier x, while
the principle of dimensional homogeneity prescribes the more drastic requirement of
invariance when the multiplications are carried out with a different arbitrary multiplier
for each fundamental property. (Tolman 1915, 232)

The principle of dimensional homogeneity requires a wider range of symmetry transformations (it
has a wider class of models, i.e. allows for mappings between worlds which would violate the laws
under Tolman’s principle of similitude) and so is the more powerful principle, but the principle of
similitude applies to cases that the principle of dimensional homogeneity does not and so is more
apt to be placed as the fundamental principle of dimensional analysis.

2.3 Tolman v. Ehrenfest-Afanassjewa

There is an interpretative issue that will bring us back to the metaphysical considerations at hand.
Ehrenfest-Afanassjewa42 most clearly states an objection to Tolman’s principle shared by the other
42Walter’s (1990) account of this historical debate is overly dismissive of Ehrenfest-Afanassjewa’s contributions,

especially her later, post-Dimensional Analysis, mathematical intervention (Ehrenfest-Afanassjewa 1926), which
is only described as “extensive and confusing” (Walter 1990, 101). This dismissal is unfortunately mirrored in
responses by Bridgman (1926) and Campbell (1926)—though Bridgman includes Ehrenfest-Afanassjewa (1926) in
the list of important references which have appeared in-between editions of Dimensional Analysis. (The list can be
found in the preface to the revised edition.) A major reconsideration of her work in dimensional analysis is under
development, but see also San Juan (1947), Palacios (1964), and Johnson (2018) for developments of her approach
to dimensional analysis. See Uffink et al. (2021) for a more general reevaluation of her work in mathematics and
physics.
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respondents: The principle of similitude is merely a restricted version of the principle of dimensional
homogeneity, and surely the more general principle is more fundamental. From the first paragraph:

An accurate analysis shows that Tolman’s considerations possess at least a close con-
nection with the reduction to a definite hypothesis of the conviction of the homogeneity
[unit invariance]43 of all the equations of physics, a conviction which is commonly used
without any foundation. This is not the intention of the author, as appears from his
third paper on the same subject, yet he really does nothing else but construct a system
of dimensions of his own (indeed one that in some respects deviates from the C.G.S.
system), and he examines all equations with a view to homogeneity as regards this system
of dimensions. (Ehrenfest-Afanassjewa 1916b, 1)

While Tolman (1916) rejects the presentation of his principle as determining a system of dimensions,
he accepts the presentation of the relationship between the two principles: The principle of similitude
involves a further empirical ansatz which is to be settled by the investigations into the nature of
gravity, and the principle is to be given methodological priority due to its usefulness. His parting with
Ehrenfest-Afanassjewa provides the opportunity to raise a distinction. When Ehrenfest-Afanassjewa
states that Tolman is establishing a principle of homogeneity restricted to a special set of dimensions
she is referring to representational dimensions—dimensions considered only as change-ratios for
class on unit systems. When Tolman claims that this is not the case, he is considering ontic
dimensions—dimensions considered as descriptions of the nature of the quantities defined in terms
of their formulae.

(Representational Dimensions) Dimensions encode the transformations of numerical
representations of quantities due to changes in unit systems. A quantity having a positive
dimension of power n in mass means that the numerical value of that quantity will differ
in unit systems by the ratio of their mass units to the nth power.

(Ontic Dimensions) Dimensions are properties of quantities in physical systems; they
encode similarity relations between different systems. That two systems share quantities
of like dimensions shows that they share some class of symmetry transformation.44

We could just as well distinguish these as unit-dimensions and quantity-dimensions.45 Represen-
tational dimensions are merely formal devices translating between unit conventions. As described
43Homogeneity, i.e. unit invariance, is sometimes treated as the fundamental principle of dimensional analysis in

lieu of dimensional homogeneity. Authors vary on which is to be taken as axiomatic and which is to be derived,
but the cases in which unit invariance and dimensional homogeneity come apart are so few and spurious as to
be dismissed for our purposes (cf. Bridgman 1931). I treat both approaches as the “dimensional homogeneity”
approach. For more on the mathematical definition of homogeneity, see Ehrenfest-Afanassjewa (1926), San Juan
(1947), and Palacios (1964).

44This distinction is given by Johnson (2018), 105-112. A similar distinction between dimension-first and unit-first
attempts to provide a mathematical model for the quantity calculus is noted by Raposo (2018). See also Sterrett
(2009) for the connection between similarity relations and ontic quantity dimensions.

45This distinction became clearer in the 1930s, see Abraham (1933) and redacted.
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before they are exhausted by the exponents in the change ratios of the dimension in question relative
to the basic dimensions, e.g. [F ] is shorthand for the unit transformation rule f ′

f
=
(

m′

m

)1
·
(

l′

l

)1
·
(

t′

t

)−2
.

Ontic quantity dimensions, according to the fundamentalist at least, are intrinsic properties of
physical quantities. Ontic dimensions cut up the world of quantities into natural kinds.

Insofar as Tolman is offering a different formal system upon which to base dimensional analysis,
the diagnosis of Ehrenfest-Afanassjewa and others is correct, it is a restricted form of the orthodox
system founded on the principle of dimensional homogeneity. The question then is whether the
additional content used to restrict the symmetry class is worth having. On this count Tolman’s
principle fails, it involves too many substantive assumptions—it is committed to the relative a priori
truth of dynamical principles like Coloumb’s law and the light postulate,46 which is inappropriate
for a methodological discipline like dimensional analysis. To be clear, the a prioricity of these laws
is inappropriate to dimensional analysis because they are thought to be empirical laws, i.e. capable
of confirmation or disconfirmation, and dimensional analysis is to take on the role of a logic, whose
claims are not to be questioned in the ordinary course of physics. As indicated above, the advent of
relativity lead Tolman to believe this was not a time for physics as usual.

Setting aside for now the dispute over the meaning of “dimension”, Ehrenfest-Afanassjewa argues
that Tolman’s similitude transformations should only be understood as formal or representational,
that is passive, transformations, i.e. unit changes.47 She places conditions on Tolman’s active, ontic
interpretation of these transformations as indicating actual changes in size, e.g. a miniature universe:

(1) that a model universe in the sense defined above is possible,

(2) that we possess all equations which are wanted for a full description of the whole
universe,

(3) that the latter condition is especially fulfilled by those equations which in the C.G.S.
system serve to fix the dimensions of the different quantities. (Ehrenfest-Afanassjewa
1916b, 4)

To these conditions she raises three objections. First, the unit transformation coefficients (or scale
factors) for time, length, and mass (and so on) are fixed independently of any investigation into
the possibility of such model universes. Second, the full description condition necessitates that
the transformation coefficients (she also says, in quotes, the “dimensions”) of the other quantities
are fixed by the transformation so that definitions of novel quantities are invariant under such
transformations—this unnecessarily reduces the total number of dimensions (“the number of degrees
of freedom of the transformation”, i.e. the number of independent, basic dimensions). Third, there
46In the sense of having increased resistance to empirical disconfirmation—these laws are held closer to the center of

the web of belief than otherwise accepted.
47“The transition from the numbers x to x′

i may also be thought of in another way: instead of imagining measurements
to be made with the same units in two different worlds, we may conceive the measurements to be carried out
applying two different sets of units to the same objects (‘in the same world’).” (Ehrenfest-Afanassjewa 1916b, 3)
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is no reason to think that the current fundamental dimensions are sufficient to capture all of nature
(“which should give a necessary reduction of the degrees of freedom” in the dimensional system), and
in the case of Tolman’s reduced set of the single dimension of length (for the mechanical quantities),
it is insufficient to capture Newtonian gravity.48

Tolman accepts Ehrenfest-Afanassjewa’s presentation of the issue, with regards to the fact
that his principle of similitude ensures invariance under the arbitrary transformation of only one
quantity dimension (length) while her (and Buckingham’s) principle is more generally arbitrary—the
principle of dimensional homogeneity ensures invariance under aribrary transformations of five
basic quantity dimensions (under the usual dimensional system incorporating thermodynamics and
electromagnetism). As mentioned, Tolman does object to her characterization of his principle as
determining another “system of dimensions” distinct from the then standard centimeter-gram-second
system.49 Tolman further expresses a realist, metaphysically robust account of what a system of
dimensions is:

The dimensions of a quantity may be best regarded, I believe, as a shorthand statement
of the definition of that kind of quantity in terms of certain fundamental kinds of quantity,
and hence also as an expression of the essential physical nature of the quantity in question.
If, for example, we define force as mass times acceleration, the dimensions of force will be
[mlt−2] and this may be regarded as a shorthand recapitulation of the definition of force
in terms of mass, length and time, and also as an expression of the essential physical
nature of force. (Tolman 1916)

Tolman argues that the second principle invoked, that the dimensions of a quantity expresses the
essential nature of that quantity grounds the principle of dimensional homogeneity. That an equation
must have terms of equal exponent in each basic dimension on either side follows if equations
are taken not only to describe numerical equalities, but also quantity identities. Here Tolman
assimilates the definition of derived quantity dimensions and their metaphysical constitution. That
an assertion of the latter does not unproblematically follow from the latter is discussed in the
literature (e.g. Johnson 2018; Skow 2017)—Tolman’s conflation of definition and constitution is a
target of conventionalist critique.
48Ehrenfest-Afanassjewa suggests a strategy for saving the ontic interpretation of the dimensional symmetries—the

scaling of dimensional constants so as to guarantee quantity symmetries Jalloh (Forthcoming). The introduced
constant can be understood two ways: either as some real quantity, like a postulated constant of matter, or else
“denote it as a product of special values of the variables occurring in the equation” (Ehrenfest-Afanassjewa 1916b,
5). I beg off explaining this here, besides indicating that she develops this more thoroughly as the introduction of
“formal variables” in Ehrenfest-Afanassjewa (1916a). The upshot: such an extension of the “ ‘physical’ meaning
of the constants” trivializes the possibility of active scale transformations and the invariance of equations under
such transformations, and so “ceases to afford a criterion for distinguishing between equations which are ‘physically
allowable’ and arbitrary equations”(Ehrenfest-Afanassjewa 1916b, 6). This deserves more exegesis and investigation
than I can provide here.

49Or rather the dimensional system for which C.G.S. is a coherent units system (see §1.3). In this respect there is no
difference between the C.G.S. system and a M.K.S. system.
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The metaphysical interpretation of dimensional systems make clear Tolman’s reason for denying
that the principle of similitude provides one. According to the principle of dimensional homogeneity
force is defined and constituted by mass, length, and time, according to the formula: [f ] = MLT−2.
Under the system of dimensions that would be given by the principle of similitude, force is a function
only of length, [f ] = L−2. If Tolman were committed to a system of dimensions given by the principle
of similitude, he would say the principle attributes force the nature of an inverse area. For this
reason he later does not say that his principle provides a system of (ontic) dimensions, but rather is
an ansatz which is useful in some circumstances and whose principal commitment, the possibility of
miniature universes, is available for empirical (dis)confirmation, by way of the implied theory of
gravity.

2.4 Tolman v. Bridgman

Tolman’s ansatz is the target of Bridgman’s critique:

If the exact form of the equations and their mode of application should turn out to be
exactly identifiable with the corresponding manipulations of the theory of dimensions,
then the principle of similitude must be judged not to be new, in spite of the form of
statement above. I shall try to show in this note that such an identification is possible;
that in so far as the principle of similitude is correct it gives no results not attainable
by dimensional reasoning, and that in its universal form as stated above it cannot be
correct. (Bridgman 1916, 424)50

Bridgman’s aim, then, is to show that Tolman’s principle of similitude is more widely applicable
than the principle of dimensional homogeneity only insofar as it produces incorrect results.

Bridgman diagnoses Tolman’s apparent examples of the broader applicability of the principle
of similitude (Stefan’s law, the gas equation, etc.) by drawing attention to a special feature of the
dimensional constants involved:

The principle of similitude may be applied with correct results to all those cases in which
the dimensional constants have such a special form that they are not changed in numerical
magnitude by the restricted change of units allowed by the principle. (Bridgman 1916,
425)

The dimensions of Stefan’s constant, a, are ML−1T−2Θ−4, so we can express a as Naml−1t−2θ4,
where Na is some dimensionless number and m, l, t, and θ are units of mass, length, time, and
temperature, respectively. Now apply the principle of similitude:

a = a′ = Naxm′xl′−1
x2t′−2

x−4θ′−4 = Nam′l′−1
t′−2

θ′−4
.

50Where “the universal form” is the statement that the materials which constitute the universe could be used to
create an empirically indistinguishable universe which differed only in size (with respect to the length scale).
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The x factors cancel and the numerical value of Stefan’s constant is invariably Na. That only
some such constants are invariant under dimensional scale transformations is evident in Tolman’s
failure to capture Newtonian Gravitation: G = NGM−1L3T−2 scales with factor x−2. The conclusion
of Bridgman’s argument is that the method of similitude requires an assumption regarding the
dimensionality of constants just the same as method of dimensional homogeneity does: a user of the
principle of similitude must assume that the dimensional constants which figure in the fundamental
equations are such that their dimensional transformation coefficients cancel out. This assumption
bears out surprisingly often: In addition Bridgman cites the gas constant, the velocity of light, and
the constant of quantum action. Is there some metaphysical significance to this seeming conspiracy
of the dimensional constants?

Bridgman answers in the negative, the apparent conspiracy can be explained by the dimensional
structure of our defined unit systems. By limiting valid unit transformations to those that leave
that some choice of constants are invariant, e.g. c and e in Tolman’s system, a number of consistent
systems of dimensions can be defined. Bridgman amplifies Buckingham’s observation that the
number of independent basic dimensions or units can be determined by the number of unit-invariant
quantity relations, i.e. laws, we chose to accept as axiomatic (or a priori in the sense indicated
above). The number of fundamental quantity dimensions (and so dimensional constants) is to some
extent conventional. If force, for example, was to be set as an additional fundamental quantity, we
would need to introduce a new dimensional constant to Newton’s second law. Instead we take the
law, with this would-be constant set to unity, as a unit-invariant axiom.51 Bridgman argues that we
accept dimensional definitions not owing to some metaphysical identity but due to the frequency of
the corresponding experimental fact.

Bridgman provides a helpful demonstration of the conventionality involved. I will modify his
convention of using the square brackets [x] to using curly brackets {x} denote the unitless numerical
value of x (in line with contemporary standards, see JCGM 2012). Bridgman provides a description
of each of the constants of nature in terms of the fundamental units (5 constants and 5 basic units):52

G = {G}m−1l3t−2 = {G′}m′−1
l′3t′−2

c = {c}lt−1 = {c′}l′t′−1

k = {k}ml2t−2θ−1 = {k′}m′l′2t
′−2θ

′−1

h = {h}ml−2t−1 = {h′}m′l′−2
t′−1

E = {E}e−2ml−3t−2 = {E ′}e′−2
m′l′−3

t−2

51Bridgman and Buckingham point towards Euclid for the origin of this observation. Consider the system in which
area is a distinct dimension from length.

52G is the gravitational constant; c is the light constant; k is the (Boltzmann) thermodynamic constant; h is the
quantum constant; E is the (Coulomb) electric force constant. The following two sets of equations are adapted
from Bridgman (1916), 429.
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These equations can be used to determine the value of the constants under changes of fundamental
units. Or instead they can be reformulated so as to be used in order to determine the unit
transformations that keep their values fixed (or changed by whatever ratio we wish to consider):

l′2 = {h}
{h′}

(
{c}
{c′}

)−3 {G}
{G′}

l2

t′2 = {h}
{h′}

(
{c}
{c′}

)−5 {G}
{G′}

t2

m′2 = {h}
{h′}

{c}
{c′}

(
{G}
{G′}

)−1

m2

θ′2 = {h}
{h′}

(
{c}
{c′}

)5 ( {k}
{k′}

)−2 {G}
{G′}

θ2

e′2 = {h}
{h′}

{c}
{c′}

(
{E}
{E ′}

)−1

e2

Tolman’s transformation equations can be derived by holding all constants fixed except for G, which
changes by a factor of x−2. However different transformation equations can be defined by varying
other constants and holding G fixed. In each of these systems some constant or other is the odd
man out, i.e. is variant under similitude transformations. Generally speaking, if we wish to freely
vary some number of the fundamental units (like Tolman does for length), we will have to vary the
same number of universal constants. The indeterminancy of which constants are varied due to the
conventional choice of which fundamental unit to ground our dimensional system in (i.e. a choice of
alternative similitude principles) was taken by Bridgman to undermine Tolman’s characterization of
his principle as an empirical ansatz to guide the development of a novel theory of gravity. There is
no more reason to hope for a new theory of gravity guided by this principle than a new theory of
electricity. The constant, and so the physical theory, that “the” principle of similitude is in tension
with is a matter of arbitrary choice. In other words, the principle does not yield unique empirical
predictions—which is to be expected given Tolman’s retreat to presenting the principle as only
defining a formal system of dimensions (see §2.3).

Tolman presents a full-fledged metaphysical account of “measurable quantities” in his final
response regarding the principle of similitude. This account is in no way reactionary, but rather is
to serve a foundational purpose:

The time is already ripe for a much more comprehensive and systematic treatment of the
field of mathematical physics than has hitherto been attempted, and the completion of
this task would make it possible to derive all the equations of mathematical physics from
a few consistent and independent postulates, and to define all the quantities occurring in
these equations in terms of a small number of indefinables. The purpose of this article
is to discuss from a somewhat general point of view the nature of the quantities which
occur in the equations of mathematical physics and to consider a set of indefinables for
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their definition. We shall thus hope to help in the preparation for that more complete
systematization of mathematical physics which is undoubtedly coming. (Tolman 1917,
237)

Tolman aims to prepare the way for a generally axiomatic treatment of physics as a whole.53

Tolman reintroduces his metaphysical posit by way of discussing the relation that holds between
fundamental and derived quantities, which is represented by dimensional formulae:

The dimensional formula of a quantity may be regarded as a shorthand statement of the
definition of that kind of quantity in terms of the kinds of quantity chosen as fundamental,
and hence also as a partial statement of the ”physical nature” of the quantity in question.
(Tolman 1917, 242, his emphasis)54

As basic dimensions have such a metaphysical significance, Tolman holds that the apparent necessity
of five fundamental quantity dimensions (three mechanical ones, one for electromagnetism, another
for thermodynamics) is due to there being “five fundamentally different kinds of ‘thing’ ”: space,
time, matter, electricity, and entropy.

Beyond being sufficient to account for all known physical kinds, Tolman puts forth two further
conditions on a chosen set of fundamental quantity dimensions. The fundamental quantities must
be extensive—this allows for extensive methods of measurement for all derived quantities even those
that are themselves intensive (consider the role of a thermometer in measuring the temperature).55

The set of fundamental quantity dimensions must also be such that they provide an optimal level of
simplicity to the system of quantities.

With all this on the table, Tolman argues that Bridgman’s conventionalism is due to a confusion
of quantity and unit:

The fact that it has become usual to pick out the units for derived quantities in the
way indicated has sometimes led to an unfortunate confusion as to the real significance
of dimensional formulae. Thus there has grown up the practice of speaking of the
dimensions of a unit when what is really intended is the dimensions of the quantity
involved. It certainly seems best, however, to use the dimensional formula of a quantity
as a shorthand restatement of its definition in terms of the fundamental kinds of quantity.

53Appropriate to the generality of his aims, Tolman begins by taking on Russell’s (1903) distinction of magnitude and
quantity. One might say that magnitudes measure quantities, i.e. there is a map from quantities to magnitudes
that assigns quantities relative locations in magnitude space with sufficient structure to ground the assignment of
numbers and an algebra. Generally the literature has not preserved this distinction and instead uses magnitude
to refer to the size (numerical or not) of a concrete quantity (but see Tal 2021). Tolman’s system, including his
fundamental distinction of intensive and extensive quantities cannot be dealt with here.

54That dimension can at most only be a partial description of the nature of a quantity is here set aside, see Lodge
(1888) and Mari (2009). Tolman later recognizes this, see [redacted].

55“In case the derived quantity has intensive rather than extensive magnitude some more or less artificial correlation
of the magnitude in question with quantities having extensive magnitude will then have to be used, as has been
done in the case of our ordinary temperature scale.” (Tolman 1917, 248)
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The dimensional formula is thus a symbol for the physical nature of the derived quantity
and a recapitulation of the necessary relation between different kinds of quantity rather
than the statement of a relation between units which we find convenient. (Tolman 1917,
249)

The dimensional relations between quantities are necessary, not conventional. This distinguishes
quantity dimensions from unit dimensions, or dimensional systems from unit systems (see §1.3).
Generally speaking a dimensional system or a unit system can be used to fix the other, bey defining
a coherent system of units. Non-standard dimensional systems are often defined in this way by
setting a constant equal to one and eliminating one kind of unit for another, e.g. the spatialization of
time units in relativity theory upon the adoption of the light postulate, if one takes this to be a true
elimination of the constant c then one adopts a dimensional system in time and length units are
equivalent.56 Tolman rejects any such conventionalism regarding the basic quantity dimensions. For
him the reduction of the time dimension to space dimensions would be the same as reducing pressure
to volume on account using them to form a two dimensional graph—a well founded correlation is
insufficient for a dimensional reduction, let alone the reduction of a basic quantity dimension.57 By
distinguishing the necessary dimensional relations of quantities from the conventional “dimensional”
relations of units, Tolman takes himself to be reiterating what I am calling the ontic-representational
dimension distinction he made in Tolman (1916). This confusion between the “dimensions of
quantity” and “dimensions of unit” he claims may be “a contributory cause for a number of criticisms
which have been made on the principle of similitude.” (Tolman 1917, 251) That said, Tolman stops
short of an explicit defense of his principle, and as far as I’ve seen, never defends or makes use of
it again—at this point his work in GR would be all the more pressing, setting aside the coming
quantum revolution. As I will argue in the next section, the points he makes against Bridgman’s
libertine conventionalism does point the way to a metaphysics of quantity dimensions, but one
weaker than the quantity dimension fundamentalism that he develops over the course the debate
concerning his principle of similitude.

2.5 Verdicts

As mentioned above, the failure of Tolman’s principle of similitude was overdetermined. There is,
however, much to learn about the foundations of dimensional analysis from the debate concerning
its relation to the principle of similitude and the objectivity of ontic quantity dimensions. Here are
the results we may take from each of the criticisms discussed above.
56Physicists often talk in this manner, but it is apparent that they usually take this to only be a change in unit systems

and not in dimensional systems. The “suppressed” constants return when it is time for physical interpretation
(compare Rücker 1888).

57Though Tolman is a metaphysical realist about dimension, he thinks what we take to be the number of dimensions
is a manner of empirical inquiry. The special sciences, following the example of thermodynamics, may introduce
new kinds of measurable quantities (e.g. economics). The reduction of the number of dimensions seemed to him
impossible, but not logically so.
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Buckingham correctly shows that the principle of dimensional homogeneity and the Π-theorem
which follows from it can generate a broad class of symmetry transformations of which Tolman’s
“relativity of size” is only a special case (generated by a scale transformation of length and the
fixing of the speed of light and Coulomb’s law, etc.). Tolman is right to claim that the principle of
similitude is the broader principle in different, methodological sense, that it can be used to derive
functional equations for systems in which the dimension of the relevant constant is unknown—a
situation in which the principle of dimensional homogeneity alone is useless.

Ehrenfest-Afanassjewa sharpens the criticism that Tolman’s principle is merely setting up different
dimensional system from the standard one embodied in the C.G.S. unit system. She argues that
while such a system may be set up, Tolman has not met the conditions needed to give what is in the
first instances a unit transformation an ontic interpretation—one such condition will be a change in
the magnitude of the gravitational constant across the similitude transformation, a transformation
she takes to be nomologically impossible. Tolman capitulates that his principle only works as setting
up a representational system of units—though this may still constrain the form of future theories of
gravity—and puts forward a robust, realist (what I call fundamentalist) metaphysics of dimensions.

Bridgman shows this extra domain of applicability to not be an argument in favor of the
methodological priority of Tolman’s principle of similitude, contrary to Tolman’s rejoinder to
Buckingham. For one, the epistemic benefit of the principle is limited as it depends on an assumption
about the dimensions of the relevant constant, though not its exact dimensional formula: its
dimensions must be such that it is invariant under the similitude transformation. While this turns
out to generally be the case (with the notable exception of G), Bridgman shows that given the
number of constants and the number of basic dimensions (“fundamental units”) any principle of
similitude based on the scaling of a single such basic dimension would lead to some constant or
another being left out, depending on which laws are held to be invariant under the transformation.
The similitude transformations follow from this conventional choice and dimensional homogeneity
(or more directly, unit invariance), and Tolman’s chosen unit system fails to be empirically adequate
in the case of gravity. Tolman, systematizing his response to Ehrenfest-Afanassjewa, does not
fully defend the principle of similitude but aims to clarify a confusion that he takes to be behind
criticisms of the principle levied by Bridgman and others. Tolman distinguishes between ontic
quantity dimensions and formal unit dimensions and claims that which Bridgman’s conventionalist
argument depends on a confusion between the two. While unit systems are indeed conventional,
dimensional systems, expressed by dimensional formulae, are supposed to be representative of the
intrinsic metaphysical nature of the quantities they describe: we cannot conventionally chose the
basic quantity dimensions. Insofar as Tolman retreated to a unit dimension interpretation of his
principle in response to Ehrenfest-Afanassjewa’s criticism, this marks a complete rejection of the
ontic interpretation of the principle of similitude, but it also marks the beginning on a debate
regarding the metaphysics of quantity dimensions that has largely been neglected.
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3 Three Metaphysics of Quantity Dimensions

In this section I summarize the two metaphysical accounts of quantity dimensions which emerge
from the early methodological debate and propose a synthesis which overcomes difficulties with
both positions. As described in §1.4, fundamentalism, the metaphysics of dimensions espoused by
Tolman, and conventionalism, the anti-metaphysics espoused by Bridgman, can be understood as
opposite positions regarding two theses:

(1) Quantity dimensions are substantive natural kinds.

(2) The basis of quantity dimension space is determined by nature.

The fundamentalist accepts both theses, and the conventionalist rejects both theses. The convention-
alist case against (1) lies in the fact that the use of dimensions to reason about unit transformations
is sufficient to explain their usefulness and sufficient to capture all of the results of dimensional
analysis. The conventionalist case against (2) relies on the symmetry in defining equations: we
can just as well take f = ma to define the force dimension in terms of the dimensions of mass and
acceleration as we can take it to define the mass dimension in terms of the dimensions of force
and acceleration. Therefore the definition of a quantity dimensions does not say anything about
its “essential nature”, it pure convention which dimensions are treated as basic in the first place.
Further, the conventionalist argues that we can make either reductive definitions of dimensions that
eliminate basic quantity dimensions or add basic quantity dimensions from which new derivative
quantity dimensions can be defined: the number of basic quantity dimensions is also determined by
convention.

In order to make clearer the fundamentalist rejoinder, I divide (2) into two sub theses, yielding
three fundamentalist commitments:

(1) Quantity dimensions are substantive natural kinds.

(2a) The number of and the identity of the basic quantity dimensions are determined by
nature.

(2b) Relations between different quantity dimensions, as in the defining equations of
derivative dimensions, are necessary and not conventional.

The conventionalist argument against (2a) is only partially successful—while there appears to be no
natural constraint on which quantity dimensions appear as fundamental. A dimensional system for
mechanics which treats force as a basic quantity is as representationally adequate as a dimensional
system which treats mass as a basic quantity instead. However, there is a natural lower limit on the
number of quantity dimensions that can adequately represent a physical system. In fact, in Tolman’s
rebuttal to Bridgman’s conventionalism, he puts forward the essential argument in favor of the
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objectivity of basic quantity dimensions: the Rayleigh-Riabouchinsky paradox. The paradox shows
us that artificially reducing quantity dimensions reduces the power of the principle of dimensional
homogeneity. For example, Tolman (1917, 250) shows that the dimensional analytic derivation of
the equation for the centripetal force,

f = k
mv2

r
,

becomes much more indeterminate when the dimensions of length and time are equated (reducing
the basic mechanical dimensions to two by making velocity (c) dimensionless):

f = k
mvn

r
.

This is evidence that a dimensional system which collapses the length and time dimensions lacks
the representational capacity to describe the centripetal force—this is a constraint set by nature.
However, Tolman went to far in holding that this shows that the the identities of the basic quantity
dimensions are objectively determined by nature; it is in fact the number of basic dimensions that
are so determined.

3.1 The Generalized Rayleigh-Riabouchinsky Paradox: The Nature of
Dimensional Explanations

In an early exposé of dimensional analysis, Rayleigh (1915) uses dimensional analysis to derive
equations for a number of systems including a case of heat transfer between a rigid rod and a stream of
fluid. Riabouchinsky (1915) showed that by reducing the number of dimensions involved in describing
the system from four to three—by eliminating the independent dimension of temperature due to an
adoption of the mechanical theory of heat—dimensional analysis results in a less determinant result.
It would seem then that we have a paradox: more knowledge about the system, that temperature has
equivalent dimension to energy, yields a less informative result!58 This surprising result shows that
not all dimensional formulae can be understood as reductive, and so the multiplicity of a dimensional
system is not fully conventional but rather is restricted on one side by nature—the elimination of an
independent, basic temperature dimension leads to an inadequate representation of the heat transfer
system.

The consider a purely mechanical (and simpler) variant of the Rayleigh-Riabouchinsky paradox
from Bridgman’s Dimensional Analysis.59 The system that we wish to describe is an elastic pendulum
(we are only dealing with vertical motion here so this is wholly distinct from the simple pendulum
discussed in §1.1): a cubic box of volume v, filled with liquid of density d, is hung from a ceiling by
58See Palacios (1964) and Gibbings (2011) for treatments of the paradox in light of a fuller understanding of the

algebra of dimensions. “Many authors believe to have made an important discovery in forming dimensional systems
with the aid of an insufficient basis. To think so is akin to maintaining that the details of a scene would be better
appreciated from its shadow projected on a screen, rather than by looking at it directly.” Palacios (1964), 43.

59The relevant discussion begins on Bridgman (1931), 59. I follow it closely.
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a spring with an elastic constant k. The mass of the liquid in the box is acted on by gravity with a
constant acceleration of g. We are tasked with determining the period of oscillation of the pendulum,
t. First we write down the dimensional formulae for the variables that describe the system:

[k] = MT−2

[t] = T

[v] = L3

[d] = ML−3

[g] = LT−2.

Since this system is described by five variables and the mechanical dimensional system involves three
basic dimensions, dimensional analysis will determine the form of two dimensionless products of
powers of the dimensional quantities involved (i.e. Π-terms). To determine the forms of the Π-terms,
we must solve two sets of equations for the dimensional exponents of the component terms. Each set
is composed of equations for each basic dimension. Three equations and five variables means that
the exponents of two variables must be arbitrarily determined. We follow Bridgman in choosing the
simplest cases for each Π-term: Π1 ∝ t1k0 and Π2 ∝ t0k1. So the Π-terms will each have the form:

Π1 = tvα1dβ1gγ1

Π2 = kvα2dβ2gγ2 .

Now we set up the two sets of linear equations to determine exponents of zero in each basic dimension
for the two Π-terms:

M : 0α1 + β1 + 0γ1 + 0 = 0 0α2 + β2 + 0γ2 + 1 = 0

L : 2α1 − 3β1 + γ1 + 0 = 0 3α2 − 3β2 + γ2 + 0 = 0

T : 0α1 + 0β1 − 2γ1 + 1 = 0 0α2 + 0β2 − γ2 − 2 = 0.

These equations yield these two solutions,

α1 = −1
6 α2 = −2

3
β1 = 0 β2 = −1

γ1 = 1
2 γ2 = −1,



3.1 THE GENERALIZED RAYLEIGH-RIABOUCHINSKY PARADOX: THE NATURE OF
DIMENSIONAL EXPLANATIONS 33

so

Π1 = tv− 1
6 g

1
2

Π2 = kv− 2
3 d−1g−1.

The Π-theorem tells us that the system can be described by an equation of the form

0 = Ψ(Π1, Π2),

where Ψ is an undetermined function. This equation can be restated60 as a solution for Π1

Π1 = f(Π2),

which yields an equation for t:

t = v
1
6 g− 1

2 f

kv− 2
3

dg

 ,

where f is some undetermined function.
Rather than define volume as a derivative dimension in terms of length we can treat it as an

independent dimension (with its own fundamental unit) with a perhaps surprising result.

[k] = MT−2

[t] = T

[v] = V

[d] = MV−1

[g] = LT−2

Five variables and four basic dimensions yields a single Π-term of the form:

Π = tkαvβdγgδ.

We solve the set of linear equations,

M : α + γ = 0

L : δ = 0

T : − 2α − 2δ + 1 = 0

V : β − γ = 0 ,

60See Buckingham (1914), 351 and Bridgman (1931), 41.
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yielding the solutions α = 1/2, β = −1/2, γ = −1/2, and δ = 0. So

Π = tk
1
2 v− 1

2 d− 1
2

and solving for t:

t = C

√
vd

k
,

where C s a dimensionless constant. This solution is consistent with but more determinate than the
equation derived when we include the fact that volume is reducible to length a priori (as an axiom
of geometry). Bridgman notes that rather than introduce volume as a basic dimension, we could
have used the fact that the volume and the density of the liquid matters for the behavior of the
system only insofar as they determine the mass of the filled box. With three dimensions and only
four variables, we would have derived the equally determinate t = C

√
m
k

.
The framework of dimensional analysis provides a ready explanation of this phenomenon:

By decreasing the number of basic dimensions but leaving the number of variables the same,
Riabouchinsky raised the number of Π-terms needed to describe the heat transfer system; By
increasing the number of basic dimensions relative to the number of variables, Bridgman reduced
the number of Π-terms needed to describe elastic spring system. Practicalities aside, one may
question the warrant of such moves—which the conventionalist allows as a matter of convenience and
convention. As clarified in Bridgman (1931): basic dimensions may be increased by adopting further
dimensional constants and basic dimensions may be reduced by the adoption of non-empirical laws
defining one quantity dimension in terms of others, thereby eliminating a dimensional constant.61

Whether such manipulations are so innocent is put into question by the difference in the power of
dimensional analysis depending on how the dimensional system is tuned.

Recent philosophers of science have provided accounts of how dimensional analysis provides
explanations, and in doing so have attempted to eliminate any sense of “paradox” from the Rayleigh-
Riabouchinsky phenomena discussed above. Lange (2009) has argued that dimensional analysis
provides explanations of derived laws which screen off the fundamental laws. Dimensional analysis
explains certain similarity features of systems that are independent of various aspects of their
constitution (and so the sometimes distinct sets of fundamental laws that govern the phenomena
in question).62 I want to emphasize something about how his account of dimensional explanations
61“Temperature may be either chosen as an independent unit, when the gas constant will appear explicitly as a variable,

or temperature may be so defined that the gas constant is always unity, and temperature has the dimensions of
energy. The same procedure is not incorrect in problems not involving the gas constant in the solution. But if in
this class of problem temperature is defined as equal to the kinetic energy of an atom (or more generally equal to
the energy of a degree of freedom) and the gas constant is made equal to unity, the fundamental units are restricted
with no compensating advantage, so that although the results are correct as far as temperature is proportional to
the energy of a degree of freedom, they will not give so much information as might have been obtained by leaving
the units less restricted.” (Bridgman 1931, 72)

62Lange considers the dimensional similarities of waves in a fluid and standing waves in a string (Lange 2009, sec. 4.)
Lange also discusses the role of dimensional explanations with respect to meta-laws or symmetry principles.
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applies to the generalized Rayleigh-Riabouchinsky paradox. Derivations which include a higher ratio
of basic dimensions to variables apply to a larger set of cases; they apply to systems independently of
the value of the dimensional constants that link the various basic dimensions together in the laws. In
the Bridgman case, treating volume as a basic dimension independent of length allows for the derived
equation to apply even in non-Euclidean geometries where v = l3 may not hold.63 As an empirical
matter, the would-be dimensional volume constant ω, where v = ωl3 and [ω] = VL−3, could have a
value other than 1. In the thermodynamic case, it could64 be that the value of Boltzmann’s constant
or the gas constant was different, such that a unit of temperature would not be equivalent to a
unit of energy. In both cases, the derivation that allows for the possibility of the variation of these
constant, i.e. does not treat the relevant laws as a priori, is the more explanatorily powerful as it
is more general.65 Pexton (2014) gives a different, though consistent account of how dimensional
analysis explains: dimensional analysis provides models of systems that make apparent patterns
of modal dependence (i.e. counterfactual) on the quantities. On Pexton’s modal model theory of
dimensional explanations, Rayleigh-Riabouchinsky phenomena can be accounted for by the fact
that for some systems such dimensional reductions, like that of temperature to energy, are simply
irrelevant. It is no surprise that irrelevant factors can introduce noise (in this case in the form of
extra degrees of freedom) that interfere with the power of an explanation given by the model. As
seen with Lange’s account, there is a tradeoff between abstraction and explanatory power.

The conventionalist makes both the general explanatory power and also the differences in
explanatory power depending on dimensional system (as revealed by the Rayleigh-Riabouchinsky
paradox) mysterious. Surely if some choice of convention is better than another, not as a matter of
what is convenient to deal with, but in its representational capacities, we ought question whether
dimensional systems are indeed a matter of convention after all. The fundamentalist has a nicer story
to tell about the explanatory and representational power of dimensional analysis: dimensions exist
and some dimensional systems better describe their natures than others. However, the conventionalist
critique still has some bite. Generally, the Rayleigh-Riabouchinsky paradox only shows that the
number of basic quantity dimensions, the degrees of freedom in the dimensional system, is constrained
by nature. Both practice and mathematical theory (see §3.3) give reason to believe that the basis of
a dimensional system is not unique. This conventionalist constraint on our metaphysics of quantity
dimensions can be seen by considering the symmetric nature of defining equations: the relation
between volume and length is equally well expressed by the formulae V = L3 and L = V 1

3 . What is
63This fails to hold in a very mundane case: A liter of volume was defined (by the CGPM in 1901, until 1964) as

the volume occupied by a kilogram of pure water in standard conditions, rather than as a cubic decimeter, as it is
currently. While the two definitions aim to define the same quantity, the correspondence is not exact, meaning the
former definition requires a constant to relate the volume and length unit, and the conceptual independence of
volume from length in this this defintiion requires that this constant be dimensional. See Petley (1983), 137.

64Lange (2009) holds that this is a counterlegal. This depends on the somewhat controversial though underappreciated
thesis that the values of the constants are part of the laws, e.g. nomologically necessary. See Jacobs (Forthcoming)
and Jalloh (Forthcoming) for reasons why this may not be the case.

65The explanation is powerful because it applies to more possible (or impossible) worlds; the derivation has greater
modal strength.
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needed is a metaphysics of dimensions that captures the objective structure of dimensional systems
while leaving open for convention a choice of basis. Further, this structure needs to be such that it
provides a foundation for the representational and explanatory success of dimensional analysis. In
the next section I introduce such a metaphysics of quantity, a moderate realism, quantity dimension
functionalism.

3.2 Functionalism: Best of Both Worlds?

To sum up the state of play: Even in the face of conventionalism we can accept thesis (2b) without
restraint. The realist must, however, attenuate (1) and (2a). From (1) we can salvage the ontological
realism of the quantity dimensions, but we must refrain from giving the quantity dimensions intrinsic
natures; Quantity dimensions are rather structural features of reality.66 From (2a) we can salvage
that the number of basic quantity dimensions is determined by nature, otherwise our conventionally
chosen dimensional system will fail to be empirically adequate or will be redundant and interfere
with scientific practice. We again refrain from giving the basic quantity dimensions identities or
essences that are independent of the invariant relations between them as described by the laws. This
is an ontic functionalist view regarding quantity dimensions.

While I cannot here hazard a full exposition of a functionalist account of quantity dimensions, a
sufficiently precise understanding of the proposal can be had by a consideration of the vector space
representation of quantity dimensions. That there is an analogy, indeed an algebraic isomorphism,
between quantity dimensions and vectors in a linear space. As such, we can use a vector space to model
quantity dimensions and their relations—the invariants of this representation guide the functionalist
understanding of the nature of quantity dimensions; the symmetries of this representation provide a
guide to quantity symmetries.67 I here follow the development of the vector space representation
most clearly made by Corrsin (1951), Palacios (1964), and Johnson (2018).68

3.3 Changing the Basis of Mechanical Dimension Space

Rather than give an abstract presentation of the vector space representation of quantity dimensions,
I present a vector space corresponding to a familiar dimensional system, the mechanical dimensions.
66In case this is not clear: if we take the nature of derivative dimensions to be determined by their relations to to

their defining basic dimensions, the conventionality of which dimensions are basic and which are derivative makes
the natures of erstwhile derivative dimensions conventional. This can be avoided if the nature of dimensions are not
constituted by constructions of the intrinsic natures of the basic dimensions.

67For general discussions of quantity symmetries see Roberts (2016) and Jalloh (Forthcoming).
68As Palacios and Johnson point out, this representation has its roots in the approach to dimensional analysis initiated

by Ehrenfest-Afanassjewa (1926)—Her method of generalized homogeneous functions seems to have first been
further developed by San Juan (1947). There is also a somewhat parallel literature in mathematics that reproduces
and extends some of the results discussed here: e.g. Whitney (1968a); Whitney (1968b); Tao (2012); Raposo (2018);
Raposo (2019). In particular, I will note that a given dimension space is more appropriately represented by a finitely
generated Abelian group, which roughly is a vector space with an unchosen basis, see Raposo (2018) for much more.
A more comprehensive consideration of mathematical models of quantity dimensions will have to be postponed.
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The mechanical dimensions are those dimensions which are reducible to products of powers of basic
dimensions mass (M), length (L), and time (T). By representing the basic dimensions as three
orthogonal basis vectors, we can represent all mechanical dimensions as vectors in the space spanned
by M⃗, L⃗, and T⃗.

We define the “pure” dimensions by unit vectors:

M⃗ =


1
0
0

 ; L⃗ =


0
1
0

 ; T⃗ =


0
0
1

 .

Derived dimensions can be represented by vectors that are linear combinations of the basis vectors,
with the number in each coordinate location being the power of that quantity in the corresponding
basic dimension. Some examples of derived quantity dimension vectors:

V⃗ =


0
1

−1

 ; P⃗ =


1
2

−2

 ; F⃗ =


1
1

−2

 ,

where V⃗ is the velocity dimension vector, P⃗ is the power dimension vector, and F⃗ is the force
dimension vector.69

Now some of my earlier remarks regarding a functionalist theory of quantity dimensions can be
made more clear. First, taking the mechanical dimension space as our base, we can understand
the introduction of basic quantity dimensions (e.g. temperature) as raising the dimensionality of
the space. On the other hand a reduction of the space (e.g. a reductionist mechanical theory of
heat or spatializing time via c) corresponds to a projection onto a subspace of lower dimensionality.
Parsimony and practical use tells against the proliferation of “superabundant” bases. The strict
lower limit on the multiplicity of a basis for a dimension space depends on the laws and the number
of quantities (derived or basic) needed to describe the system. The use of an insufficient basis leads
to a loss of information and representational capacity for the dimensional system.

What is conventional are the identities of the base vectors. This conventionality is familiar from
linear algebra. Consider a system in which force replaces mass as a basis vector. The new basis:

F⃗ =


1
0
0

 ; L⃗ =


0
1
0

 ; T⃗ =


0
0
1

 .

69See Corrsin (1951) for a graphical representation of mechanical space, also reproduced in Johnson (2018).
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This produces new dimensional formulae for (some of) the derived quantities:

V⃗ =


0
1

−1

 ; P⃗ =


1
1
0

 ; M⃗ =


1

−1
2

 .

Now the question is what is the invariance under such a transformation of bases that is supposed
to be metaphysically significant? Note the invariance in the relationships between force and mass:
regardless of which is treated as basic, the other scales with it by a power of 1. This means that any
scale transformation, active or passive, on the mass dimension will propagate to the force quantities
as well: if the masses double so will the forces, etc. This change of basis considered only transformed
the mass vector among the prior base vectors and so only transforms the dimensional power of
quantity vectors composed by the mass: so the coordinates of P⃗ are affected while those of V⃗ are not.
The components of each vector will vary over the change, but the intrinsic geometrical properties
of the vectors will remain invariant. One such intrinsic property of the vector space is the inner
product. The invariance of the inner product to a change of basis means that the magnitudes
and the relative angles70 of the elements of the vector space are invariant, hence: the dependence
relations between different quantity dimensions remain invariant. As these dependence relations
will be symmetric, some quantity dimensions cannot be said to ground others, except relative to
a basis, and quantity dimension symmetries71 will be tightly constrained as they will involve the
transformations of all the quantity dimensions with relevant dependency relations. Such quantity
dimensions symmetries define a class of dynamical symmetries—dimensional analysis is used to
determine similarity relations, transformations under which two systems can be used as (dynamic)
models of each other (see Sterrett 2009; Sterrett 2017 for details). These dependence relations
therefore play a double role of identifying the quantity dimensions relative to each other and of
constraining the forms of the laws. That they play the first role is determined by linear algebra;
That they play the second role was already established in the discussion of dimensional analysis
above and is discussed in more detail elsewhere.72

70One enticing idea that I can explore fully here is this: that the physical constants correspond to the relative angles
of quantity dimension vectors. If some fundamental constant, corresponding to the angle between some fundamental
dimensions, is set to 1, then two quantity dimensions collapse and there is a reduction of the order of the dimension
space, as in “natural units”. This is suggested by the treatment given by Raposo (2018), examples 3.8, 4.4, of such
transformations.

71I.e. active dimensions scale symmetries. See Martens (2021) and Jalloh (Forthcoming) for discussion.
72One might quibble here with my “constraining” language. With Campbell (1924) and Palacios (1964), one may

argue that the laws constrain dimensional analysis by defining the relations between dimensional quantities. I here
do not want to establish any sort of priority claim regarding the structure of the physical dimensions or the forms
of the laws; they are mutually constraining and I will only claim one takes precedence over the other depending on
the epistemic context.
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4 Conclusion

This paper has exposited an unduly neglected debate regarding the methodological and metaphysical
foundations of dimensional analysis and has evaluated the merits of the two major positions,
conventionalism and fundamentalism. Both positions are found lacking: conventionalism regarding
quantity dimensions fails to account for the success of dimensional analysis and the representational
constraints on dimensional systems; fundamentalism fails to fit with the conventionality found
in scientific practice and fails to give reason to privilege any basis over others for a dimensional
system. I’ve set forth the basic outline of a functionalist account of quantity dimensions, wherein the
empirical constraints on the number of basic quantity dimensions and the conventionality regarding
which quantity dimensions are treated as basic are respected. The presentation of this position is
aided by the vector space representation of dimensional systems, which makes clear the isomorphism
of different dimensional bases and makes clear the information loss associated with insufficient
bases (as realized in the Rayleigh-Riabouchinsky paradox). The metaphysical residue that the
functionalist is realist about are the symmetric dependency relations between quantity dimensions,
which correspond to the dimensional forms of the laws and so encode metaphysically robust scaling
relations. The account of functionalism given here is incomplete, my current description of the
invariants of a dimensional space is not fully satisfying, and a complete story must say something
about the constants, the number of which is correlated with the order of the dimensional system.73

While the nature of the constants and their relation with the laws has been given some limited
attention74 a full philosophical account will do well to consider the vector representation of quantity
dimensions presented here and its relation to the nomological structure of the physical world.
73It is well noted in the literature that the addition or elimination of a basic quantity dimension requires the

introduction or elimination of a dimensional constant in order to make coherent laws involving that quantity and
the other quantities in the system (see Bridgman 1931; Johnson 2018; Gibbings 2011).

74See Dahan (2020); Johnson (2018); Jalloh (Forthcoming).
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